Precision microchannel scaffolds for central and peripheral nervous system repair.
نویسندگان
چکیده
In previous studies, we demonstrated the ability to linearly guide axonal regeneration using scaffolds comprised of precision microchannels 2 mm in length. In this work, we report our efforts to augment the manufacturing process to achieve clinically relevant scaffold dimensions in the centimeter-scale range. By selective etching of multi-component fiber bundles, agarose hydrogel scaffolds with highly ordered, close-packed arrays of microchannels, ranging from 172 to 320 μm, were fabricated with overall dimensions approaching clinically relevant length scales. Cross-sectional analyses determined that the maximum microchannel volume per unit volume of scaffold approached 80%, which is nearly twice that compared to our previously reported study. Statistical analyses at various points along the length of the microchannels also show a significant degree of linearity along the entire length of the scaffold. Two types of multi-component fiber bundle templates were evaluated; polystyrene and poly(methyl methacrylate). The scaffolds consisting of 2 cm long microchannels were fabricated with the poly(methyl methacrylate) fiber-cores exhibited a higher degree of linearity compared to those fabricated using polystyrene fibers. It is believed that the materials process developed in this study is useful for fabricating high aspect ratio microchannels in biocompatible materials with a wide range of geometries for guiding nerve regeneration.
منابع مشابه
iTRAQ-based proteomics profiling of Schwann cells before and after peripheral nerve injury
Objective(s): Schwann cells (SCs) have a wide range of applications as seed cells in the treatment of nerve injury during transplantation. However, there has been no report yet on kinds of proteomics changes that occur in Schwann cells before and after peripheral nerve injury.Materials and Methods: Activated Schwann cells (ASCs) and normal Schwann cells (NSCs) were obtained from adult Wistar ra...
متن کاملPeripheral nerve regeneration monitoring using multilayer microchannel scaffolds
Over 200,000 Americans have peripheral nerve injuries annually that result in a loss of function and a compromised quality of life. Of these, a significant percent involves unsuccessful repair of peripheral nerve gaps that occur due to traumatic limb injury or collateral damage to peripheral nerves during tumor resection. The clinical gold standard to repair a nerve gap is to use sural nerve au...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملWhy does the central nervous system not regenerate after injury?
A major problem for neuroscientists and clinicians is why the central nervous system shows ineffective regeneration after injury. Injured peripheral nerve fibers reform their connections, whereas those in injured spinal cord never re-grow. Insights into the mechanisms for repair and restoration of function after spinal cord injury have been obtained by experiments showing that injured nerve cel...
متن کاملHyperbaric oxygenation in peripheral nerve repair and regeneration.
Peripheral nerves are essential connections between the central nervous system and muscles, autonomic structures and sensory organs. Their injury is one of the major causes for severe and longstanding impairment in limb function. Acute peripheral nerve lesion has an important inflammatory component and is considered as ischemia-reperfusion (IR) injury. Surgical repair has been the standard of c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of materials science. Materials in medicine
دوره 22 9 شماره
صفحات -
تاریخ انتشار 2011